On Hashing-Based Approaches to Approximate DNF-Counting
نویسندگان
چکیده
Propositional model counting is a fundamental problem in artificial intelligence with a wide variety of applications, such as probabilistic inference, decision making under uncertainty, and probabilistic databases. Consequently, the problem is of theoretical as well as practical interest. When the constraints are expressed as DNF formulas, Monte Carlo-based techniques have been shown to provide a fully polynomial randomized approximation scheme (FPRAS). For CNF constraints, hashing-based approximation techniques have been demonstrated to be highly successful. Furthermore, it was shown that hashing-based techniques also yield an FPRAS for DNF counting without usage of Monte Carlo sampling. Our analysis, however, shows that the proposed hashing-based approach to DNF counting provides poor time complexity compared to the Monte Carlo-based DNF counting techniques. Given the success of hashing-based techniques for CNF constraints, it is natural to ask: Can hashing-based techniques provide an efficient FPRAS for DNF counting? In this paper, we provide a positive answer to this question. To this end, we introduce two novel algorithmic techniques: Symbolic Hashing and Stochastic Cell Counting, along with a new hash family of Row-Echelon hash functions. These innovations allow us to design a hashing-based FPRAS for DNF counting of similar complexity (up to polylog factors) as that of prior works. Furthermore, we expect these techniques to have potential applications beyond DNF counting. 1998 ACM Subject Classification G.1.2 Special Function Approximation, F.4.1 Logic and Constraint Programming
منابع مشابه
Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls
Probabilistic inference via model counting has emerged as a scalable technique with strong formal guarantees, thanks to recent advances in hashing-based approximate counting. State-of-theart hashing-based counting algorithms use an NP oracle (SAT solver in practice), such that the number of oracle invocations grows linearly in the number of variables n in the input constraint. We present a new ...
متن کاملA New Probabilistic Algorithm for Approximate Model Counting
Constrained counting is important in domains ranging from artificial intelligence to software analysis. There are already a few approaches for counting models over various types of constraints. Recently, hashing-based approaches achieve both theoretical guarantees and scalability, but still rely on solution enumeration. In this paper, a new probabilistic polynomial time approximate model counte...
متن کاملEfficient Inference for Complex Queries on Complex Distributions
We consider problems of approximate inference in which the query of interest is given by a complex formula (such as a formula in disjunctive formal form (DNF)) over a joint distribution given by a graphical model. We give a general reduction showing that (approximate) marginal inference for a class of distributions yields approximate inference for DNF queries, and extend our techniques to accom...
متن کاملHashing-Based Approximate Probabilistic Inference in Hybrid Domains: An Abridged Report
In recent years, there has been considerable progress on fast randomized algorithms that approximate probabilistic inference with tight tolerance and confidence guarantees. The idea here is to formulate inference as a counting task over an annotated propositional theory, called weighted model counting (WMC), which can be partitioned into smaller tasks using universal hashing. An inherent limita...
متن کاملHashing-Based Approximate Probabilistic Inference in Hybrid Domains
In recent years, there has been considerable progress on fast randomized algorithms that approximate probabilistic inference with tight tolerance and confidence guarantees. The idea here is to formulate inference as a counting task over an annotated propositional theory, called weighted model counting (WMC), which can be partitioned into smaller tasks using universal hashing. An inherent limita...
متن کامل